SLOPE STABILIZATION USING DRIVEN PILES

Mohamed Ashour, Ph.D., P.E. University of Alabama, Huntsville

Southeastern Transportation Geotechnical Engineering Conference (STGEC)

October 5, 2010

Slope Stabilizing Piles/Shafts Effectively Act as Shear Dowels across the Slip Plane

Pile Rows for Slope Stabilization (Thomson et al. 2005)

Current Practice

CHALLENGES:

- Characterization and Evaluation of the Mobilized
 - Lateral Pressure Induced by the Moving Soil
 - Mass on the Pile
- Interaction between Stabilizing Piles
 and Soil Arching Effect
- Soil Flow-around Failure

A. SIMPLE WEDGE FAILURE

B. Pre-existing Failure Surface

C. Anticipated Failure Surface

Horizontal and Vertical Growth in the Soil Passive Wedge

SLICE OF WEDGE AT DEPTH x

$(h-x) \tan \beta_{m} \tan \varphi_{m}$

 $\varphi_{\rm m}$

С

Х

h–x

D

h

Pile

The SW model is based on

- Stress-strain and strength behavior of the soil as assessed in the triaxial test,
- Soil effective stress analysis
- Plane strain problem
- Beam on Elastic Foundation

TIE-BACK IN PSSLOPE

Depth from Pile Head	Horizontal Spacing	Vertical Inclination Angle	Tie-Back Length	Tie-Back Section	Factored Resistance
(ft)	(ft)	with Horiz. (deg)	ft	Area (in2)	(Kips)
3	4	0	30	3	10

Pile W 14 x 211 Mp = 1625 kip-ft Desired FS of Supported Slope = 1.3

Embankment Profile, UK (Smethurst and Powerie 2007)

	Unit weight,	Friction angle,	Effective cohesion
Soil type	γ : Ib/ft ³	ϕ' : degrees	c' : Ib/ft3
Weald Clay embankment fill	121	25	20.9
Softened Weald Clay	121		20.9
embankment fill		19	
Weathered Weald Clay	121	25	20.9
Weald Clay	127	30	104.4
Rockfill	121	35	0

Depth below ground level: ft

~~

SUMMARY:

The current analysis/program provides the following:

- Limit equilibrium analysis for existing or anticipated failure surface
- Evaluation of the progressive driving pressure of sliding mass as a function of soil-pile displacement with varying safety factors
- Consideration of the flow-around failure of soil which limits the soil mass interaction with the pile
- The effect of pile properties and spacing
- LRFD recommendations
- Implementation of tie-back as an elastic support